BB AT TIOTS

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE

COIMBATORE-49
Accredited by NAAC (Cycle IIT) with “A+” Grade

Recognized by UGC, Approved by AICTE, New Delhi and
Affiliated to Bharathiar University,
Coimbatore.
DEPARTMENT OF COMPUTER APPLICATIONS
Course Code / Course Name: 23UCU403 /Computer System Architecture

YEAR: 2023-2024
CLASS: I BCA “B”

STAFF NAME: Dr.A.DEVI
uniT 1- Data Simplification

Simplifying Logic Circuits with Karnaugh Maps

* The circuit at the top right is the logic equivalent of the Boglean expression: 1

f =abc+abc +abc > I
« Now, as we have seen, this expression

can be simplified (reduced to fewer b | D@ﬁf

terms) from its original form, using the B
Boolean identities as shown at right.

« The circuit may be simplified as C | -
follows: _ _ !
f =abc +abc +abc

f =abc +abc+abc +abc a:

(since X=x+Xx) > b Hf f

f = (abc + abc) + (abc + abc)
f =ac(b+b)+ab(c+c) C—
or,f =ac+ab

Since you have now had some
experience with simplification of
Boolean expressions, this
example is (hopefully) familiar
and understandable.

However, for more complex
Boolean expressions, the
Identity/substitution approach
can be VERY cumbersome (at
least, for humans).

Instead of this approach, we can
use a graphical technique called

the Karnaugh map.

c s
Original logic circuit
a:

b f

C——

Simplified equivalent logic circuit

Karnaugh Maps

Another approach to simplification is
called the Karnaugh map, or K-map.

A K-map is a truth table graph, which
aids in visually simplifying logic

It?s usefui’lﬁ)lyup 105 or bva |Jables, and
IS a good tool to help understand the
process of logic simplification.

The algebraic approach we have used
previously is also used to analyze complex
circuits in industry (computer analysis).

At the right is a 2-variable K-map.

This very simple K-map demonstrates
that an n-variable K-map contains all the
combination of the n variables in the K-
map Sspace.

y y

X 0 1 This minterm
Is expressed as
10 11 -
X f =xy
2 3

Two-Variable K-map,

labeled for SOP terms.
Note the four squares
represent all the com-
binations of the two
K-map variables, or
minterms, in X &y

(example above).

Three-Variable Karnaugh Mayg

A useful K-map is one of three variables.

Each square represents a 3-variable Yz YZ VI VI
minterm or maxterm.
000 ooz Jour oz

All of the 8 possible 3-variable termsare X

represented on the K-map. 0 ! 3f |2
When moving horizontally or vertically, y | | /11 110
only 1 variable changes between adjacent 4 5 7 6

squares, never 2. This property of the K-
map. IS unigue and accounts for its

unusual numbering system. As an example, this
The K-map shown is one labeled for SOP minterm Ce'f'} (011)
terms. It could also be used for a POS represents the_
problem, but we would have to re-label minterm f = xyz.

the variables.

Four Variable Karnaugh Mag

A 4-variable K-map can simplify
problems of four Boolean variables.*

The K-map has one square for each
possible minterm (16 in this case).

Migrating one square horizontally or
vertically never results in more than

one variable changing (square
designations also shown in hex).

* Note that on all K-maps, the left and right

edges are a common edge, while the top and
bottom edges are also the same edge. Thus,

the top and bottom rows are adjacent, as are
the left and right columns.

WX

WX

WX

WX

yz_ Yz

Yz

yz

0000 0001

0011

3 3

0010

2 2

0111

0110

1111

JF 15

1110

E 14

1011

B 11

1010

A 10

Note that this is still y
SOP K-map.

Exercise 1

We will use the Karnaugh map to
simplify Boolean expressions by
placing minterm or maxterm
values on the map and then
grouping terms to develop
simpler Boolean expressions.

Let’s practice placing some terms
on the K-map shown. For the
SOP Boolean expression below,
place 1’s and zeros on the map.

f = wxyz + wxyz + WXYZ + WXyz

WX

WX

WX

WX

yI Yz yz yz

0000

0001

1

0011

3

3

0010

2 2

0101

0111

0110

C 12

1101

13

1111

F 1

5

1110

= 14

1000

8

8

1001

9

9

1011

B

11

1010

A 10

Karnaugh map labe

ed for

SOP problem solution.

Karnaugh Map Comments |

K-maps can be labeled many ways, but
in EE 2310, always use this labeling!
Each square is unique. We can label it WX
in binary, decimal. or hex. We can also
designate the Boolean function by the —
K-map squares it occupies.

The minterms on the K-map can be WX
labeled as f=2m(5, 7, 13, 15) in decimal,
or f=Xm(5, 7, D, F) in hex.* _

Given the Sigma (X) coordinates, you WX

could immediately deduce that the SOP
functionwas: f =wxyz +wXyz + WX yz + Wxyz

* Xm is the symbol for the “Boolean sum” (OR) coordinates of
the squares.

yz Yz yZ y?
0000 |0001 |o0011 |0010
o o1 33 32 2
0100 flUl' [0TI 3\Jo110
11 1
4 4|5 5|7 716 6
1100 |f101 [1111 11110
TR
C 12|Mp_14dF_15|E 14
1000 |1001 |1011 |1010
8 8|9 9B 11|]A 10

Observe that the X notations (in
either SOP or POS) completely

describe the Boolean function

mapped on the K-map, as long as one

knows what the input variables are.

Try your hand at developing
the Boolean expression from

the f = Xm designation on a K-
map.

The XM designation of a
Boolean function is given as

f= ¥m(9, B, D, F) (SOP).

Find the Boolean expression by

plotting the 1’s on the chart
and developing the expression
from the minterms.

WX

WX

WX

YZ yz yz Yz
0000 0001 0011 |0O010
0 011 1] 3 3] 2 2
0100 0101 0111 |0110
4 415 o 7 7] 6 6
1100 1101 1111 J1110
C 12| D 13F 15| E 14
1000 1001 1011 | 1010
8 819 9 B 11]A 10

Karnaugh Map Terminologm

+ In the K-map at right, each small Y. yzZ yz VyzZ
square, or cell, represents one 4-
variable Boolean AND function, or \WX
minterm (if we wanted, we could _
label it to represent OR functions WX
or maxterms).

0000 0001 0011 0010 N

N

0 01 1 3 3 2 2
0100 0101 0111 0110

P

4 4 5 5 7 /7 6 6 Y

1100 1101 1111 1110
« Any square or rectangular group WX
of cells that is a power of 2 (1, 2, 4, C 12D 13F 15E 1
8, 16) is called an implicant. — |[t000 1001 |]1011 {010
: WX
« All of the groups of squares in the 8__8l9 B 11| 1
K-map to the left (including the Examples of various cell groupings,

single square) represent implicants ~ all of which represent K-map
of different sizes. implicants.

Prime Implicants

We will be simplifying Boolean
functions plotting their values on
a K-map and grouping them into
prime implicants.

What is a prime implicant? Itis

an implicant that covers as many
1 values (SOP K-map) or 0

values (POS K-map) as possible,
yet still retains the identity of

implicant (# of cells = power of 2,
rectangular or square shape).

Some SOP prime implicants are
shown on the adjoining K-map.

WX

WX

WX

WX

YZ yZ yz Yz
0ano |00z oim_ 0010
)

41}010 1$1321|2
qlooi 0101 ci111 011ci
1 0 1 1

A |4ls s|k_7)6) 6
iloo= 1101 Ja111. f110
1 1 1 1

¢ ol —d+ —asbe4
]IO%-O| 1081 10%)1 10(1)0

8—18 9 9lB 11|lAa 10

More Karnaugh Map Terminolog

Distinguished 1-cell: A single Another prime implicant .
minterm that can be covered by only y 7 \yz yz yz
one prime implicant.

. . . ——|0000 0001 0011 0010
Essential prime implicant: A prime WX
implicant that covers one or more o 01 13 32 2
distinguished 1-cells. — o100 o101 o111 0110

- inimi 1 1

Note: Every fully minimized S D

Boolean expression must include all 11001201 T o
of the essential prime implicants of f. WX 1 1 :I_|\|

In the K-map at right, the Boolean o
minterm f = wxyz is a distinguished — | 1000 100311011 |1010
1-cell, and the essential prime WX)/8 o o ula 10

implicant f = wxy is the only prime Essential prime implicant that

. i . : NP Distinguished 1-cell
implicant that includes it. covers distinguished 1-cell

“Prime Implicants”

.AS n?ted t“io slides back, a “prime Since x & z do not change value over the implicant,
implicant” is the_largest square or they are the variables in the new Boolean minterm.
rectangular implicant of cells . _
occupied by a 1 (SOP) or 0 (POS). 7

Thus a prime implicant will have 1, y >® >@ yZ

2,4, or 8 cells (16 is a trivial prime). —— | 0000 |OOO1 0011 0010

How do we determine the Boolean WX1lo ol: s 3l >

expression for a prime implicant? _ ETmE T
The Boolean expression for an SOP X 1 1)

prime implicant is determined by 4 4 fl 517 |6 6
creating a new minterm whose only \\:L 1100 101 11111 Nhiio
variables are those that do NOT l 1 :_|

change value (0—1 or 1—0) over the C 12 °|E 14
extent of the prime implicant. — | 1000 JA001 1011 |1010
Thus the prime implicant at right WX N N
may be represented by the Boolean -

expression: f = xz. Example of a prime implicant

Logic Simplification —an SOP Example

We simplify a Boolean expression by

finding its prime implicants on a K-Map.
To do this, populate the K-map as follows:

— Each circled group of cells corresponds to a

For an SOP expression,* find the K-Map
cell for each minterm of function f, and
place a one (1) in it. Ignore 0’s.

Circle groups of cells that contain 1°s.

The number of cells enclosed in a circle

must be a power of 2 and square or
rectangular.
It is okay for qroups of cells to overlap.

prime implicant of f.

Note that the more cells a given circle
encloses, the fewer variables needed to
specify the implicant!

WX

WX

WX

WX

yz Y2 yz yz

0000 ‘ 0001 |oo11 ‘ 0010
O 01 13 32 2
0100 0101 011l 0110
L 1 1 1 1J
415 517 Al 6
1100 |dhor 1111 [|110
c 12| db—1de —SlE 14
1000 |1001 [1011 [1010
g8 s8lo olB 11lAa 10

* APOS example will follow.

Using the K Map for Logic Simplification:

* Another example: yz Y YZ Yi
— The implicants of f are 4, 6, 12, 14.

— This corresponds to the function: W X

0000 0001 0011 0010

— 0 0] 1 1 3 3] 2 2
f = WXYZ + WXyzZ + WX YZ + WXYZ

—_ 0100 |o101 0111 0110

— We create a prime implicant by wx | 1 1
_ : 4 45 5|17 7l 6
grouping the 4 cells representing f. T 1
: 111

— On the wx axis, the cells are 1 wy | Pt [R Ry
whether or not w is one, and D 14F 15
always when x is 1 (w not needed). — | 1000 |1001 | 1011 [1010

— On the yz axis, the cellsare 1 WX

) 8 819 9B 11]A 10
whether or nOt_y IS ONe, and Remember: For purposes of grouping implicants, the
always when z is 0 (y not needed). top and bottom rows of the K-map are considered

— Thus the Sl_mpllfIEd expression for This grouping takes advantage of the fact that the left
f is f — X7 and right columns are adjacent.

A POS K-Map

On a POS K-map, the procedure is

‘It_hq[same, except that we map 0°s.
et:

y+12 y+£ ;/+£§+Z

; W+ X 0000 0001 0011 0010
=(W+X+y+2)-(W+X+Yy+2) o1 s aa
(WH+X+Y+2)-(W+X+Y+2) —[0100 o101 o01lL 0110
We find prime implicants exactly W+ X W a5 s 7 e
the same way — except that we look _ —
for variable that produce 0’s. wa x| 0
As shown, w and y do not change C 12D 1B3F 15E 14
over the extent of the function. — 1000|1001 011 11010
o . W+ X 0.1.0
The simplified expression 8 8lo 9 11]A 71
is: = (w+ y). The simplified w—
circuit is shown at right. —_— 3 — f
y—

Summary of Karnaugh Map Procedure

« Insummary, to simplify a Boolean expression using a K-Map:

1.
2.

Start with the truth table or Boolean expression, if you have one.

If starting from the truth table, write the Boolean expression for each
truth table term that is 1 (if SOP) or 0 (if POS).

(Develop the full Boolean expression, if necessary, by OR-ing the AND
terms together if SOP or AND-ing OR terms if POS.)

On the K-Map, plot 1’s (for SOP) or 0’s (for POS).

Group implicants together to get the largest set of prime implicants
possible. Prime implicants may overlap each other.

The variables that make up the term(s) of the new expression will be
those which do not vary in value over the extent of each prime implicant.

Write the Boolean expression for each prime implicant and then OR (for
SOP) or AND (for POS) terms together to get the new expression.

The Boolean expression
represented is:

f = WXyz +WXyz + WXyZ + WX Yz
+WXYZ + WXYZ + WX YZ + WXYZ

Note that since prime implicants
must be powers of 2, the largest

group of squares we can circle is 4.

Thus we circle three groups of 4
(in red). The circles may overlap.

We now write the new SOP
simplified expression. It is:

f =Xy+ Xxz+wz

WX

WX

yz yz yz yz

0000 0001 0011 0010
0 01 1 3 5 X 2
0100 0101 0111 0110

1 L 1
4 45 5 7 76 6
1100 1101 1111 1110

]] 1

1 13 1 5 E 14~
1000 1001 1011 1010
8 1 9 1 1 A 10

NOT a prime implicant!

, Given the Truth

ion

t

1Inimiza

‘ Another SOP M

Minterms Plotted on K-Map

The four minterms are plotted yZ yZ yZ Yz
on the truth table. _ loooo |ooor o011 |]oo010

Note that they easily group into WX1o ol 113 3l2 2

one prime implicant. I I 0101 | o121 [o110
[1 1 : :
4

Over the extent of the prime WX I
implicant, variables w & z vary, S o A
so they cannot be in the WX 10]? mi L i
Boolean expression for the 2l)11 15le 14
prime implicant. —l1000 |1001 |]1011 [1010
Variables x and y do not vary. WX

8 8l9 9B 11]A 10
Thus the expression for the
minimum SOP representation The original Boolean expression is:

mustbe f = xy . f =wWXyz+WwWXYyz+WXYZ+ WXYzZ

¥ Dc
Equivalent circuit after reduction
P :

using Karnaugh map.

Logic circuit from truth table.

Exercise 3

* The truth table below was developed from a “spec.” Show the
SOP expression and then minimize it using a K-map and draw
the minimized circuit.

—h

XV Z

000 1 YZ YZYZ Y7
0 0 10 000 001 011 010
0 101 0 1 3 2
0 1 1 1 100 101 111|110
1000 4 5 7 6
1 01 O

1 1 0 O

1 1 1 1

yZ Y/Z yZ yE yZ Y/Z yZ yE

— D'Uml 0011 |oo010 — | o000 mm? 0011 |oo10
WX 1o ofp " Yz 3|2 > WX 1o ok " {lz 3|2 -
—[o100)10i OTIJI-_\ 0110 — [oz00 (a:;f- o;ﬁ_\ 0110
WXl ol " 4ls o WX 4 " 4l7 e e
1100 || or [[kr2z [feeo 1100 |[Jor [fr212 | Je1z0
WX 1 1 WX 1 1
c 12|loT He—u|e 14 c 12||NZaHE “F5|E 14
— | 2000 [Roor [fz011 [1010 — 2000 || o1 fz01z [z010
WX WX
8 89198 11|]A 10 8 8@198_1_1A 10
InCOFTECt Sotaton (parta—— COTTeCt SOt
minimization): f = Xyz + yz f=xz+yz

Remember: Prime implicants should overlap, if this means that they can be made larger.

XT = -
-

3 - f

y
VA

.

Note that the resulting circuit uses 3 logic gates,
whereas the original expression, with six minterms,
would have used a minimum of seven gates and

four inverters.

Sometimes Major Simplification is Not Possible

Using the X notation:

f= Zm(l,2,3,5,7,11,13)
Note that there are 3
distinguished one-cells (in red).

There must therefore be at least
3 prime implicants (4 in this
case, 3 essential).

The simplified expression (and
not very simplified at that) is:

f =wz+ wxy + Xyz + XyZ

Yo yz yz yz
0000 |oQal__YigAs \ 6640
o o]l 1 1 dais 2 1]2
0100 |®i0i— |o111] |o110
A | | I B P
1100 |i101 |J1111 1110
C 12 Dl IAF 15|E 14
1000 |1001 q 1010
8 8|9 ol 11]A 10

Exercise 4 |

A truth table and its Boolean expression are shown below, along
with the circuit of this unsimplified expression. Use the K-map
on the following page to simplify and draw the simplified circuit.

f W—e—

Original Circuit

f = WX yz+wXxyz + Wxyz + WX Yz

RPlRr|R|R|[P|R|R|~|o|o|o|lo|lo|o|o|o| S

RliR|FR|[R|[O|O|OC|O|FR|FR|[R|[R|O|OC|O|O]| X
R|IR|O|O|FR|FR|O|O|FR|FR|O|O|FR|FR|O|0IK

R|o|r|o|r|olr|o|r|o|r|o|r|lo|r|o|N
B
|

Karnaugh Map of Last Example

VI Yz yz yz

0000 0001 0011 |0010
0 011 3 3| 2 2
0100 |O101 0111 0110
4 41 5 7 7|16 6
1100 |[1101 1111 J1110
cC 12 D F 151 E 14
1000 1001 1011 | 1010
8 819 B 11]A 10

The Concept of “Don’t Cares”

The six implicants on the K-Map
shown can be represented by the
simplified expression f = Xy + X Z.
Suppose for our particular logic
system, we know that Y and Z will

never be 0 together.

Then the yz Implicants do not
matter, since they cannot happen.

To show the condition cannot occur,

we put X’s in the column -- they are
“don’t cares” -- conditions that

cannot happen.

yz Y. YZ YZ

0000 looor |oo1r [oozo
X

o olt 13 3|2 2

" &R R
X

4 4 sl Ale @

11%2 1101 Llli 11101

cC 12 R P

1099|1001 f1011 1010

s s8lo olB 11|la 10

“Don’t Cares” (2)

Since the function will never get into
the left column, we “don’t care” how
those minterms are represented.
Why not make them 1°s?

Doing that, we can make a much WX

Iargier Rrime implicant and a simpler
Booleanh expression. For this

i yz yz yz

0000 0001 0011 0010
0 1 011 11 3 312 2
0100 j0101 0111 0110

6

6

il_rrrw]plicant, f=x. e WX
e expression Is valid, since the
0 WX
forbidden condition will never allow
the two left squares to be occupied. —
WX

“Don’t cares” let us further simplify
an expression.

1110 !

1010

A

10

“Don’t Cares” — Another Example \

Assume the Boolean expression is as
shown on the K-map (black 1’s and
black prime implicants).

The simplest SOP expressions for the
function is f = wWxz +_wxy
Also assume that wx yz
cannot occur.

Since these cannot ever happen, they
are “don’t cares,” and since they are
“don’t cares,” make them 1 (red)!

We can then further simplify the
expression to f =w x + x z (larger
prime implicants).

andwx yz

yz Yz yz yz

0000 0001 0011 |0010

0 0|1 11 3 312 2
0100 01(211 015-1 0110
4 4 iL =17]7 6 6

11UV L1UL 1l -
0112 D 113 F[115__E 11'4

1000 1001 1011 1010

“Don’t Cares” -- Summar

“Don’t Cares” occur when there are variable combinations,
represented by squares on a Karnaugh map, that cannot occur in
a digital circuit or Boolean expression.

Such a square is called a “Don’t Care.” Since it can never happen,
we can assign a value of 1 to the square and use that 1 to (possibly)
construct larger prime implicants, further simplifying the circuit
(you could assign it the value 0 in a POS representation).

Circuits or Boolean expressions derived using “Don’t Care”
squares are as valid as any other expression or circuit.

We will see later in sequential logic that the concept of “Don’t
Cares” will help in simplifying counter circuits.

Exercise 5

n SOP Boolean expression is
defined as f=Xm(2, 6, C, D, F, E).

The inputs are such that w is
never 1 when x =0.

Find the simplified expression
and draw the simplified circuit.

WX

WX

WX

WX

yo Yo yz yz
0000 0001 0011 0010
0 011 1 3 3] 2 2
0100 |o0101 0111 |0110
4 41 5 517 71 6 6
1100 1101 1111 J1110
C 121D 13F 15|E 14
1000 1001 1011 | 1010
8 819 9 B 11|A 10

	b f
	a
	c
	yz yz yz
	yz yz yz
	yz yz
	wx
	yz yz (1)
	wxyz 
	wxyz

	yz yz yz (1)
	yz
	yz yz yz (2)
	f= Σm(9, B, D, F) (SOP).

	yz yz yz (3)
	wx (1)
	yz yz yz (4)
	yz yz yz (5)
	1
	1 (1)
	1 (2)

	yz yz (2)
	wx (2)
	yz yz (3)
	yz yz yz (6)
	wx wx
	wx (3)
	yz yz yz (7)
	wx (4)
	yz yz (4)
	yz yz (5)
	wx (5)
	wx (6)
	wx (7)

	yz yz yz yz
	yz yz
	wx
	wx (1)
	wx (2)
	yz yz (1)
	wx (3)
	wx (4)
	wx (5)
	z
	f = Σm(1,2,3,5,7,11,13)
	wx
	wx (1)
	yz yz
	wxy 
	xyz
	wxyz 
	wx yz

	yz yz (1)
	wx (2)
	wx (3)
	wx (4)
	yz yz yz
	wx (5)
	yz yz (2)
	1 1 1

	yz yz yz (1)
	yz yz (3)
	wx (6)
	yz yz (4)

