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• The circuit at the top right is the logic equivalent of the Boolean expression: 
a
 

f  abc  abc  abc 
• Now, as we have seen, this expression 

can be simplified (reduced to fewer 
terms) from its original form, using the 
Boolean identities as shown at right. 

• The circuit may be simplified as 
follows:       

f  abc  abc  abc    

f  abc  abc  abc  abc a 
(since x=x+x) b f

 
 

f  (abc  abc)  (abc  abc ) 

f  ac(b  b)  ab(c  c ) c 
or, f  ac  ab 

b f 

c 



 

 

 
 

• Since you have now had some 

experience with simplification of 

Boolean expressions, this 

example is (hopefully) familiar 

and understandable. 

• However, for more complex 

Boolean expressions, the 

identity/substitution approach 

can be VERY cumbersome (at 

least, for humans). 

• Instead of this approach, we can 

use a graphical technique called 

a 

 

b f 

c 
Original logic circuit 

a 

b f 

c 

the Karnaugh map. Simplified equivalent logic circuit 
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• Another approach to simplification is 
called the Karnaugh map, or K-map. 

•  A K-map is a truth table graph, which 
aids in visually simplifying logic. 

• It is useful for up to 5 or 6 variables, and 

y y 
 

 

01 

1 This minterm 

is expressed as 

is a good tool to help understand the x 
process of logic simplification. 

f  xy . 

• The algebraic approach we have used 
previously is also used to analyze complex 
circuits in industry (computer analysis). 

• At the right is a 2-variable K-map. 

• This very simple K-map demonstrates 
that an n-variable K-map contains all the 
combination of the n variables in the K- 
map space. 

Two-Variable K-map, 

labeled for SOP terms. 

Note the four squares 

represent all the com- 

binations of the two 

K-map variables, or 

minterms, in x & y 

(example above). 

x 



 

 

 

• A useful K-map is one of three variables. 

• Each square represents a 3-variable yz 
minterm or maxterm. 

• All of the 8 possible 3-variable terms are x 
represented on the K-map. 

• When moving horizontally or vertically, 
only 1 variable changes between adjacent 
squares, never 2. This property of the K- 
map, is unique and accounts for its 

 
  

yz yz yz 

unusual numbering system. 

• The K-map shown is one labeled for SOP 
terms. It could also be used for a POS 
problem, but we would have to re-label 
the variables. 

As an example, this 

minterm cell (011) 
represents the 

minterm f  xyz . 
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0100 0101 0111 0110 

1 1 1 1 
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• A 4-variable K-map can simplify yz  
problems of four Boolean variables.* 

   

• The K-map has one square for each wx  
possible minterm (16 in this case). 

   

• Migrating one square horizontally or wx 

vertically never results in more than 

one variable changing (square wx 
designations also shown in hex). 

 

* Note that on all K-maps, the left and right wx  
edges are a common edge, while the top and 
bottom edges are also the same edge. Thus, 

yz yz yz 

the top and bottom rows are adjacent, as are 

the left and right columns. 

Note that this is still 

SOP K-map. 
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• We will use the Karnaugh map to 

simplify Boolean expressions by 

placing minterm or maxterm 

values on the map and then 

grouping terms to develop 

simpler Boolean expressions. 

• Let’s practice placing some terms 

on the K-map shown. For the 

SOP Boolean expression below, 

place 1’s and zeros on the map. 

yz yz 
 
 

wx 

wx 

wx 
 

 

wx  

yz yz 

 

 
 

f  wxyz 


 

wxyz wxyz 




wxyz Karnaugh map labeled for 

SOP problem solution. 

Exercise 1 

0000  0001  0011  0010 

0 0 1 1 3 3 2 2 

0100  0101  0111  0110 

4 4 5 5 7 7 6 6 

1100 1101 1111 1110 

C 12 D 13 F 15 E 14 

1000  1001  1011 1010 

8 8 9 9 B 11 A 10 

 



 

 

0100 0101 0111 0110 

1 1 1 1 

 
1 1 

 
 

 
 

• K-maps can be labeled many ways, but yz 
in EE 2310, always use this labeling! 

   

• Each square is unique. We can label it 

in binary, decimal, or hex. We can also 

designate the Boolean function by the 

K-map squares it occupies. 

• The minterms on the K-map can be wx 
labeled as f=Σm(5, 7, 13, 15) in decimal, 
or f= Σm(5, 7, D, F) in hex.* 

• Given the Sigma (Σ) coordinates, you wx  

 
 

yz yz yz 

could immediately deduce that the SOP Observe that the Σ notations (in 

function was: 
    

f  wx yz  wxyz  wx yz  wxyz either SOP or POS) completely 
describe the Boolean function 

* Σm is the symbol for the “Boolean sum” (OR) coordinates of 

the squares. 

mapped on the K-map, as long as one 
knows what the input variables are. 

Karnaugh Map Comments 

wx  
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yz 
• Try your hand at developing    

yz yz yz 

the Boolean expression from wx  
the f = Σm designation on a K- 

map. wx 
• The Σm designation of a 

Boolean function is given as wx 

f= Σm(9, B, D, F) (SOP). 

• Find the Boolean expression by wx  
plotting the 1’s on the chart 

and developing the expression 

from the minterms. 

Exercise 2        
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• In the K-map at right, each small yz 
square, or cell, represents one 4- 

variable Boolean AND function, or wx 
minterm (if we wanted, we could               

yz yz yz 

label it to represent OR functions 

or maxterms). 

• Any square or rectangular group 

of cells that is a power of 2 (1, 2, 4, 

8, 16) is called an implicant. 

• All of the groups of squares in the 

K-map to the left (including the 

single square) represent implicants 

of different sizes. 

wx 

wx 
 

 

wx  

Examples of various cell groupings, 

all of which represent K-map 

implicants. 

Karnaugh Map Terminology 
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• We will be simplifying Boolean 

functions plotting their values on 

a K-map and grouping them into 

prime implicants. wx  
• What is a prime implicant? It is 

an implicant that covers as many wx 
1 values (SOP K-map) or 0 

values (POS K-map) as possible, wx 
yet still retains the identity of     

implicant (# of cells = power of 2, wx  
rectangular or square shape). 

• Some SOP prime implicants are 

shown on the adjoining K-map. 
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• Distinguished 1-cell: A single Another prime implicant 
 

  

minterm that can be covered by only yz 
one prime implicant. 

• Essential prime implicant: A prime 

implicant that covers one or more 

distinguished 1-cells. 

• Note: Every fully minimized wx 

yz yz yz 
 

 

 

 

 

Boolean expression must include all 

of the essential prime implicants of f. 

• In the K-map at right, the Boolean 

minterm f = wxyz is a distinguished 

1-cell, and the essential prime 

wx 
1100 

C 12 

1000 
 

8 8 

1101 

1 
D 13 

1001 
 

9 9 

1111 

1 
F 15 

1011 
 

B 11 

1110 

1 
E 14 

1010 
 

A 10 

implicant f = wxy is the only prime 

implicant that includes it. 

Essential prime implicant that 

covers distinguished 1-cell 
Distinguished 1-cell 

 

wx  

wx  
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• As noted two slides back, a “prime 
implicant” is the largest square or 
rectangular implicant of cells 

Since x & z do not change value over the implicant, 

they are the variables in the new Boolean minterm. 
 

occupied by a 1 (SOP) or 0 (POS). 
Thus a prime implicant will have 1, 
2, 4, or 8 cells (16 is a trivial prime). 

• How do we determine the Boolean 
expression for a prime implicant? 

• The Boolean expression for an SOP 
prime implicant is determined by 
creating a new minterm whose only 
variables are those that do NOT 
change value (0→1 or 1→0) over the 
extent of the prime implicant. 

• Thus the prime implicant at right 
may be represented by the Boolean 

yz yz 
 
 

wx 

wx 

wx 
 

 

wx  

yz yz 

expression: f = xz. Example of a prime implicant 

“Prime Implicants” 
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• We simplify a Boolean expression by        

finding its prime implicants on a K-Map. yz 
• To do this, populate the K-map as follows:    

yz yz yz 

– For an SOP expression,* find the K-Map 

 

 
– Circle groups of cells that contain 1’s. 

– The number of cells enclosed in a circle 

must be a power of 2 and square or 

rectangular. 

– It is okay for groups of cells to overlap. 

– Each circled group of cells corresponds to a 

prime implicant of f. 

– Note that the more cells a given circle 

encloses, the fewer variables needed to 

specify the implicant! 

wx 

wx 

wx 
 

 

wx  

* A POS example will follow. 

Logic Simplification – an SOP Example 
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cell for each minterm of function f, and   0 0 1 1 3 3 2 2  

place a one (1) in it. Ignore 0’s.     0100  0101  0111  0110   
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Using the K Map for Logic Simplification:

• Another example: yz 
– The implicants of f are 4, 6, 12, 14.    

yz yz yz 

– This corresponds to the function: wx        

f  wx yz  wxyz  wx yz  wxyz    

– We create a prime implicant by 

grouping the 4 cells representing f. 

– On the wx axis, the cells are 1 

whether or not w is one, and 

always when x is 1 (w not needed). 

– On the yz axis, the cells are 1 

whether or not y is one, and 

always when z is 0 (y not needed). 

– Thus the simplified expression for 

f is: f  xz . 

wx 

wx 
 

 

wx  
Remember: For purposes of grouping implicants, the 

top and bottom rows of the K-map are considered 

adjacent, as are the right and left columns. 

This grouping takes advantage of the fact that the left 

and right columns are adjacent. 
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• On a POS K-map, the procedure is 
the same, except that we map 0’s. 

• Let:                         
y  z 

 
 

 

y  z 

 
 

  

y  z 

 
 

y  z 

f  (w  x  y  z)  (w  x  y  z) w  x 
 

 
    

(w  x  y  z)  (w  x  y  z)    

• We find prime implicants exactly w  x 
the same way – except that we look         

for variable that produce 0’s. 

• As shown, w and y do not change 
over the extent of the function. 

• The simplified expression 

w  x 

w  x 
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is: f  (w  y).  The simplified 
circuit is shown at right. 
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Summary of Karnaugh Map Procedure 

• In summary, to simplify a Boolean expression using a K-Map: 

1. Start with the truth table or Boolean expression, if you have one. 

2. If starting from the truth table, write the Boolean expression for each 

truth table term that is 1 (if SOP) or 0 (if POS). 

3. (Develop the full Boolean expression, if necessary, by OR-ing the AND 

terms together if SOP or AND-ing OR terms if POS.) 

4. On the K-Map, plot 1’s (for SOP) or 0’s (for POS). 

5. Group implicants together to get the largest set of prime implicants 

possible. Prime implicants may overlap each other. They will always be 

square or rectangular groups of cells that are powers of 2 (1, 2, 4, 8). 

6. The variables that make up the term(s) of the new expression will be 

those which do not vary in value over the extent of each prime implicant. 

7. Write the Boolean expression for each prime implicant and then OR (for 

SOP) or AND (for POS) terms together to get the new expression. 
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• The Boolean expression 

represented is: 

 
 

yz yz 

 
 

yz yz 
 

      

f  wx yz  wxyz  wxyz  wx yz 

wxyz  wxyz  wx yz  wxyz 
wx  

 

• Note that since prime implicants wx 
must be powers of 2, the largest 

group of squares we can circle is 4. wx 
• Thus we circle three groups of 4 

(in red). The circles may overlap. 

• We now write the new SOP wx  
simplified expression. It is: 

f  xy xz  wz 
NOT a prime implicant! 

C 12 D F 1 

8 9 B 1 

0000  0001  0011  0010  

0 0 1 1 3 3 2 2 

0100  0101  0111  0110  

4 4 
1 

5 5 
1 

7 7 
1 

6 6 

1100 1101  1111 1110 

1 
13 

1 1 
5 E 14 

1000 1001  1011 1010 

8 1 9 1 1 A 10 

 



 

 

 
 

 

w x y z f 
0 0 0 0  
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Another SOP Minimization, Given the Truth 

Table 
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• The four minterms are plotted 

on the truth table. 

• Note that they easily group into 

one prime implicant. 

• Over the extent of the prime 

implicant, variables w & z vary, 

so they cannot be in the 

Boolean expression for the 

prime implicant. 

• Variables x and y do not vary. 

• Thus the expression for the 

yz yz 
   

wx  
   

wx 

wx 
 

 

wx  

yz yz 

minimum SOP representation The original Boolean expression is: 
 

      

must be f 
 

 xy . f  wx yz  wx yz  wx yz  wx yz 
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Equivalent circuit after reduction 

using Karnaugh map. 
 

Logic circuit from truth table. 

 



 

 

 

 

 
 

• The truth table below was developed from a “spec.” Show the 

SOP expression and then minimize it using a K-map and draw 

the minimized circuit. 

x y z f 
 

   

yz yz yz yz 
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x 

Exercise 3 
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Incorrect solution (partial     Correct Solution: 

minimization): f  xyz  yz 
 

 

f  xz  yz 
Remember: Prime implicants should overlap, if this means that they can be made larger. 
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y f 
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Note that the resulting circuit uses 3 logic gates, 

whereas the original expression, with six minterms, 

would have used a minimum of seven gates and 

four inverters. 
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• Using the Σ notation: 

f = Σm(1,2,3,5,7,11,13) 

• Note that there are 3 

distinguished one-cells (in red). 

• There must therefore be at least 

3 prime implicants (4 in this 

case, 3 essential). 

• The simplified expression (and 

not very simplified at that) is: 

yz yz 
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f  wz 




wxy 




x yz 




xyz 
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A truth table and its Boolean expression are shown below, along 

with the circuit of this unsimplified expression. Use the K-map 

on the following page to simplify and draw the simplified circuit. 

 

 

 

 

 

 

 

 
Original Circuit 

 
  

f  wx yz 


 

wxyz 




wxyz 




wx yz 

Exercise 4 
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Karnaugh Map of Last Example 
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• The six implicants on the K-Map        

shown can be represented by the yz 
simplified expression f = x y + x z. 

• Suppose for our particular logic wx  
system, we know that y and z will    

 

yz yz yz 

never be 0 together. wx 
• Then the yz  implicants do not wx 

matter, since they cannot happen. 

• To show the condition cannot occur,     

we put X’s in the column -- they are wx  
“don’t cares” -- conditions that 

cannot happen. 
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• Since the function will never get into 

the left column, we “don’t care” how        

those minterms are represented. 

Why not make them 1’s? 
yz yz 

 

yz yz 
   0000 0001 0011 0010 

• Doing that, we can make a much wx  
larger prime implicant and a simpler 0 1 0 1 1 

 
3 3 2 2 

Boolean expression. For this    0100 0101 0111 0110 

implicant, f = x. 
wx 

4
 1 

4 5 
1 1 1 

5 7 7 6 6 

• The expression is valid, since the 
wx 

1100 1101 1111 1110 

forbidden condition will never allow 
1 

C 12 D 
1

13 F 
1
15 E 

1
14 

the two left squares to be occupied. 

• “Don’t cares” let us further simplify 

an expression. 
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• Assume the Boolean expression is as yz 
shown on the K-map (black 1’s and 
black prime implicants).    

• The simplest SOP expressions for the wx  
 

yz yz yz 

function is f  wxz  wxy .       

• Also assume that wx yz 
cannot occur. 

and wx yz wx 

• Since these cannot ever happen, they 
are “don’t cares,” and since they are 
“don’t cares,” make them 1 (red)! 

• We can then further simplify the 
expression to f = w x + x z (larger 
prime implicants). 

“Don’t Cares” – Another Example 
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• “Don’t Cares” occur when there are variable combinations, 

represented by squares on a Karnaugh map, that cannot occur in 

a digital circuit or Boolean expression. 

• Such a square is called a “Don’t Care.”  Since it can never happen, 

we can assign a value of 1 to the square and use that 1 to (possibly) 

construct larger prime implicants, further simplifying the circuit 

(you could assign it the value 0 in a POS representation). 

• Circuits or Boolean expressions derived using “Don’t Care” 

squares are as valid as any other expression or circuit. 

• We will see later in sequential logic that the concept of “Don’t 

Cares” will help in simplifying counter circuits. 
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• n SOP Boolean expression is 

defined as f=Σm(2, 6, C, D, F, E). 

• The inputs are such that w is 

never 1 when x = 0. 

• Find the simplified expression 

and draw the simplified circuit. 

yz yz 
 
 

wx 

wx 

wx 
 

 

wx  

yz yz 

Exercise 5 

0000 0001  0011 0010 

0 0 1 1 3 3 2 2 

0100 0101  0111 0110 

4 4 5 5 7 7 6 6 

1100 1101 1111 1110 

C 12 D 13 F 15 E 14 

1000 1001  1011 1010 

8 8 9 9 B 11 A 10 

 


	b f
	a
	c
	yz yz yz
	yz yz yz
	yz yz
	wx
	yz yz (1)
	wxyz 
	wxyz

	yz yz yz (1)
	yz
	yz yz yz (2)
	f= Σm(9, B, D, F) (SOP).

	yz yz yz (3)
	wx (1)
	yz yz yz (4)
	yz yz yz (5)
	1
	1 (1)
	1 (2)

	yz yz (2)
	wx (2)
	yz yz (3)
	yz yz yz (6)
	wx wx
	wx (3)
	yz yz yz (7)
	wx (4)
	yz yz (4)
	yz yz (5)
	wx (5)
	wx (6)
	wx (7)

	yz yz yz yz
	yz yz
	wx
	wx (1)
	wx (2)
	yz yz (1)
	wx (3)
	wx (4)
	wx (5)
	z
	f = Σm(1,2,3,5,7,11,13)
	wx
	wx (1)
	yz yz
	wxy 
	xyz
	wxyz 
	wx yz


	yz yz (1)
	wx (2)
	wx (3)
	wx (4)
	yz yz yz
	wx (5)
	yz yz (2)
	1 1 1

	yz yz yz (1)
	yz yz (3)
	wx (6)
	yz yz (4)



