

 Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE

 COIMBATORE-49
Accredited by NAAC (Cycle III) with “A+” Grade

Recognized by UGC, Approved by AICTE, New Delhi and

Affiliated to Bharathiar University,

Coimbatore.

DEPARTMENT OF COMPUTER APPLICATIONS

Course Code / Course Name: 23UCU403 /Computer System Architecture

YEAR: 2023-2024

CLASS: I BCA “B”

STAFF NAME: Dr.A.DEVI

UNIT I – Data Simplification

• The circuit at the top right is the logic equivalent of the Boolean expression:
a

f  abc  abc  abc
• Now, as we have seen, this expression

can be simplified (reduced to fewer
terms) from its original form, using the
Boolean identities as shown at right.

• The circuit may be simplified as
follows:

f  abc  abc  abc

f  abc  abc  abc  abc a
(since x=x+x) b f

f  (abc  abc)  (abc  abc)

f  ac(b  b)  ab(c  c) c
or, f  ac  ab

b f

c

• Since you have now had some

experience with simplification of

Boolean expressions, this

example is (hopefully) familiar

and understandable.

• However, for more complex

Boolean expressions, the

identity/substitution approach

can be VERY cumbersome (at

least, for humans).

• Instead of this approach, we can

use a graphical technique called

a

b f

c
Original logic circuit

a

b f

c

the Karnaugh map. Simplified equivalent logic circuit

11

3

10

2

00

0

• Another approach to simplification is
called the Karnaugh map, or K-map.

• A K-map is a truth table graph, which
aids in visually simplifying logic.

• It is useful for up to 5 or 6 variables, and

y y

01

1 This minterm

is expressed as

is a good tool to help understand the x
process of logic simplification.

f  xy .

• The algebraic approach we have used
previously is also used to analyze complex
circuits in industry (computer analysis).

• At the right is a 2-variable K-map.

• This very simple K-map demonstrates
that an n-variable K-map contains all the
combination of the n variables in the K-
map space.

Two-Variable K-map,

labeled for SOP terms.

Note the four squares

represent all the com-

binations of the two

K-map variables, or

minterms, in x & y

(example above).

x

• A useful K-map is one of three variables.

• Each square represents a 3-variable yz
minterm or maxterm.

• All of the 8 possible 3-variable terms are x
represented on the K-map.

• When moving horizontally or vertically,
only 1 variable changes between adjacent
squares, never 2. This property of the K-
map, is unique and accounts for its

yz yz yz

unusual numbering system.

• The K-map shown is one labeled for SOP
terms. It could also be used for a POS
problem, but we would have to re-label
the variables.

As an example, this

minterm cell (011)
represents the

minterm f  xyz .

x

000

0

001

1

011

3

010

2

100 101 111 110

4 5 7 6

0100 0101 0111 0110

1 1 1 1

1 1

• A 4-variable K-map can simplify yz
problems of four Boolean variables.*

• The K-map has one square for each wx
possible minterm (16 in this case).

• Migrating one square horizontally or wx

vertically never results in more than

one variable changing (square wx
designations also shown in hex).

* Note that on all K-maps, the left and right wx
edges are a common edge, while the top and
bottom edges are also the same edge. Thus,

yz yz yz

the top and bottom rows are adjacent, as are

the left and right columns.

Note that this is still

SOP K-map.

an

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100 1101 1111 1110

C 12 D 13 F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

• We will use the Karnaugh map to

simplify Boolean expressions by

placing minterm or maxterm

values on the map and then

grouping terms to develop

simpler Boolean expressions.

• Let’s practice placing some terms

on the K-map shown. For the

SOP Boolean expression below,

place 1’s and zeros on the map.

yz yz

wx

wx

wx

wx

yz yz

f  wxyz 


 

wxyz wxyz 




wxyz Karnaugh map labeled for

SOP problem solution.

Exercise 1

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100 1101 1111 1110

C 12 D 13 F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

1 1

• K-maps can be labeled many ways, but yz
in EE 2310, always use this labeling!

• Each square is unique. We can label it

in binary, decimal, or hex. We can also

designate the Boolean function by the

K-map squares it occupies.

• The minterms on the K-map can be wx
labeled as f=Σm(5, 7, 13, 15) in decimal,
or f= Σm(5, 7, D, F) in hex.*

• Given the Sigma (Σ) coordinates, you wx

yz yz yz

could immediately deduce that the SOP Observe that the Σ notations (in

function was:

f  wx yz  wxyz  wx yz  wxyz either SOP or POS) completely
describe the Boolean function

* Σm is the symbol for the “Boolean sum” (OR) coordinates of

the squares.

mapped on the K-map, as long as one
knows what the input variables are.

Karnaugh Map Comments

wx

wx

0000

0 0

0001

1

1

0011

3

3

0010

2 2

0100 0101

1
5

5

0111

1
7

7

0110

4 4 6 6

1100 1101

1
D 13

1111

1
F 15

1110

C 12 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

yz
• Try your hand at developing

yz yz yz

the Boolean expression from wx
the f = Σm designation on a K-

map. wx
• The Σm designation of a

Boolean function is given as wx

f= Σm(9, B, D, F) (SOP).

• Find the Boolean expression by wx
plotting the 1’s on the chart

and developing the expression

from the minterms.

Exercise 2

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100 1101 1111 1110

C 12 D 13 F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

1 1

• In the K-map at right, each small yz
square, or cell, represents one 4-

variable Boolean AND function, or wx
minterm (if we wanted, we could

yz yz yz

label it to represent OR functions

or maxterms).

• Any square or rectangular group

of cells that is a power of 2 (1, 2, 4,

8, 16) is called an implicant.

• All of the groups of squares in the

K-map to the left (including the

single square) represent implicants

of different sizes.

wx

wx

wx

Examples of various cell groupings,

all of which represent K-map

implicants.

Karnaugh Map Terminology

1000 1001 1011 1010

8 8 9 9 B 11 A 10

 0000 0001 0011 0010

0 0 1 1 3 3 2 2

 0100 0101 0111 0110

 4 4 5 5 7 7 6 6

 1100

C

12

1101

D

13

1111

F

15

1110

E

14

0100 0101 0111 0110

1 1 1 1

1 1

• We will be simplifying Boolean

functions plotting their values on

a K-map and grouping them into

prime implicants. wx
• What is a prime implicant? It is

an implicant that covers as many wx
1 values (SOP K-map) or 0

values (POS K-map) as possible, wx
yet still retains the identity of

implicant (# of cells = power of 2, wx
rectangular or square shape).

• Some SOP prime implicants are

shown on the adjoining K-map.

yz yz yz

0000

0
1

0100

0

1
4

1100

1
C

1000

1
8 8

1010
0

A 10

0
B 11

1011

9 9
0

1001

1110

1
E 14

1111

1
F 15

1101

1
D 13

12

0110

1
6 6

0111

1
7 7

0101

0
5 5

4

2 2
1

0010

3 3
1

0011

1 1
0

0001

yz

0100 0101 0111 0110

1 1 1 1

1 1

• Distinguished 1-cell: A single Another prime implicant

minterm that can be covered by only yz
one prime implicant.

• Essential prime implicant: A prime

implicant that covers one or more

distinguished 1-cells.

• Note: Every fully minimized wx

yz yz yz

Boolean expression must include all

of the essential prime implicants of f.

• In the K-map at right, the Boolean

minterm f = wxyz is a distinguished

1-cell, and the essential prime

wx
1100

C 12

1000

8 8

1101

1
D 13

1001

9 9

1111

1
F 15

1011

B 11

1110

1
E 14

1010

A 10

implicant f = wxy is the only prime

implicant that includes it.

Essential prime implicant that

covers distinguished 1-cell
Distinguished 1-cell

wx

wx

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4
1

5 5
1

7 7 6 6

0100 0101 0111 0110

1 1 1 1

1 1

• As noted two slides back, a “prime
implicant” is the largest square or
rectangular implicant of cells

Since x & z do not change value over the implicant,

they are the variables in the new Boolean minterm.

occupied by a 1 (SOP) or 0 (POS).
Thus a prime implicant will have 1,
2, 4, or 8 cells (16 is a trivial prime).

• How do we determine the Boolean
expression for a prime implicant?

• The Boolean expression for an SOP
prime implicant is determined by
creating a new minterm whose only
variables are those that do NOT
change value (0→1 or 1→0) over the
extent of the prime implicant.

• Thus the prime implicant at right
may be represented by the Boolean

yz yz

wx

wx

wx

wx

yz yz

expression: f = xz. Example of a prime implicant

“Prime Implicants”

0000 0001 0011 0010

0 0

0100

1

0101

1 3

0111

3 2

0110

2

4

1100

4
1 1

5 5 7 7

1101 1111

6 6

1110

C

1000

12 D
1

1001

13 F 15

1011

1
E 14

1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

1 1

• We simplify a Boolean expression by

finding its prime implicants on a K-Map. yz
• To do this, populate the K-map as follows:

yz yz yz

– For an SOP expression,* find the K-Map

– Circle groups of cells that contain 1’s.

– The number of cells enclosed in a circle

must be a power of 2 and square or

rectangular.

– It is okay for groups of cells to overlap.

– Each circled group of cells corresponds to a

prime implicant of f.

– Note that the more cells a given circle

encloses, the fewer variables needed to

specify the implicant!

wx

wx

wx

wx

* A POS example will follow.

Logic Simplification – an SOP Example

0000 0001 0011 0010

1 1 1 1
4 4 5 5 7 7 6 6

1100 1101 1111 1110

C

1000

12 D 13 F 15
1 1

1011

E 14

1010 1001

8 8 9 9 B 11 A 10

cell for each minterm of function f, and 0 0 1 1 3 3 2 2

place a one (1) in it. Ignore 0’s. 0100 0101 0111 0110

0100 0101 0111 0110

1 1 1 1

1 1

Using the K Map for Logic Simplification:

• Another example: yz
– The implicants of f are 4, 6, 12, 14.

yz yz yz

– This corresponds to the function: wx

f  wx yz  wxyz  wx yz  wxyz

– We create a prime implicant by

grouping the 4 cells representing f.

– On the wx axis, the cells are 1

whether or not w is one, and

always when x is 1 (w not needed).

– On the yz axis, the cells are 1

whether or not y is one, and

always when z is 0 (y not needed).

– Thus the simplified expression for

f is: f  xz .

wx

wx

wx
Remember: For purposes of grouping implicants, the

top and bottom rows of the K-map are considered

adjacent, as are the right and left columns.

This grouping takes advantage of the fact that the left

and right columns are adjacent.

0000

0

0

0001

1

1

0011

3

3

0010

2 2

0100

1
4

4

0101 0111 0110

1
6 6 5 5 7 7

1100
C
1

12
1101 1111 1110

E
1

14

 D 13 F 15

1000 1001 1011 1010

8 8 9 9 B 11 A 10

f

0100 0101 0111 0110

1 1 1 1

1 1

• On a POS K-map, the procedure is
the same, except that we map 0’s.

• Let:
y  z

y  z

y  z

y  z

f  (w  x  y  z)  (w  x  y  z) w  x

(w  x  y  z)  (w  x  y  z)

• We find prime implicants exactly w  x
the same way – except that we look

for variable that produce 0’s.

• As shown, w and y do not change
over the extent of the function.

• The simplified expression

w  x

w  x

1000 1001

8 8 9 9

1011

B
0

11

1010

A
0

10

is: f  (w  y). The simplified
circuit is shown at right.

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100

C 12

1101

D 13

1111

0
F 15

1110

0
E 14

Summary of Karnaugh Map Procedure

• In summary, to simplify a Boolean expression using a K-Map:

1. Start with the truth table or Boolean expression, if you have one.

2. If starting from the truth table, write the Boolean expression for each

truth table term that is 1 (if SOP) or 0 (if POS).

3. (Develop the full Boolean expression, if necessary, by OR-ing the AND

terms together if SOP or AND-ing OR terms if POS.)

4. On the K-Map, plot 1’s (for SOP) or 0’s (for POS).

5. Group implicants together to get the largest set of prime implicants

possible. Prime implicants may overlap each other. They will always be

square or rectangular groups of cells that are powers of 2 (1, 2, 4, 8).

6. The variables that make up the term(s) of the new expression will be

those which do not vary in value over the extent of each prime implicant.

7. Write the Boolean expression for each prime implicant and then OR (for

SOP) or AND (for POS) terms together to get the new expression.

0100 0101 0111 0110

1 1 1 1

1 1

• The Boolean expression

represented is:

yz yz

yz yz

f  wx yz  wxyz  wxyz  wx yz

wxyz  wxyz  wx yz  wxyz
wx

• Note that since prime implicants wx
must be powers of 2, the largest

group of squares we can circle is 4. wx
• Thus we circle three groups of 4

(in red). The circles may overlap.

• We now write the new SOP wx
simplified expression. It is:

f  xy xz  wz
NOT a prime implicant!

C 12 D F 1

8 9 B 1

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4
1

5 5
1

7 7
1

6 6

1100 1101 1111 1110

1
13

1 1
5 E 14

1000 1001 1011 1010

8 1 9 1 1 A 10

w x y z f
0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0

1 1 1 1

Another SOP Minimization, Given the Truth

Table

0100 0101 0111 0110

1 1 1 1

1 1

• The four minterms are plotted

on the truth table.

• Note that they easily group into

one prime implicant.

• Over the extent of the prime

implicant, variables w & z vary,

so they cannot be in the

Boolean expression for the

prime implicant.

• Variables x and y do not vary.

• Thus the expression for the

yz yz

wx

wx

wx

wx

yz yz

minimum SOP representation The original Boolean expression is:

must be f

 xy . f  wx yz  wx yz  wx yz  wx yz

0000

0

0

0001

1

1

0011

3

3

0010

2 2

0100

1
4

4

0101

1
5

5

0111 0110

7 7 6 6

1100

1
C 12

1101

1
D 13

1111 1110

F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

Equivalent circuit after reduction

using Karnaugh map.

Logic circuit from truth table.

• The truth table below was developed from a “spec.” Show the

SOP expression and then minimize it using a K-map and draw

the minimized circuit.

x y z f

yz yz yz yz

x

x

Exercise 3

000

0

001

1

011

3

010

2

100 101 111 110

4 5 7 6

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

w x y z f
0 0 0 0

0 0 0 1 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1 1

0 1 1 0

0 1 1 1 1

1 0 0 0

1 0 0 1 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1 1

1 1 1 0

1 1 1 1 1

0100 0101 0111 0110

1 1 1 1

1 1

0100 0101 0111 0110

1 1 1 1

1 1

0001

1
1

1

1010

A 10

1011

B 11 9
1

9

01 10 1000

8 8

1110

E 14
1

F 15

1111

1
D 13

01 11 1100

C 12

0110

6 6
1

7 7

0111

1
5 5

01 01 0100

4 4

0010

2 2

0011

3 3

0000

0 0

0001

1
1

1

1010

A 10

1011

B 11 9
1

9

1001 1000

8 8

1110

E 14
1

F 15

1111

1
D 13

01 11 1100

C 12

0110

6 6
1

7 7

0111

1
5 5

0101 0100

4 4

0010

2 2

0011

3 3

0000

0 0

yz yz

wx

wx

wx

wx

yz yz yz yz

wx

wx

wx

wx

yz yz

Incorrect solution (partial Correct Solution:

minimization): f  xyz  yz

f  xz  yz
Remember: Prime implicants should overlap, if this means that they can be made larger.

x

y f

z

Note that the resulting circuit uses 3 logic gates,

whereas the original expression, with six minterms,

would have used a minimum of seven gates and

four inverters.

0100 0101 0111 0110

1 1 1 1

1 1

• Using the Σ notation:

f = Σm(1,2,3,5,7,11,13)

• Note that there are 3

distinguished one-cells (in red).

• There must therefore be at least

3 prime implicants (4 in this

case, 3 essential).

• The simplified expression (and

not very simplified at that) is:

yz yz

wx

wx

wx

wx

yz yz

f  wz 




wxy 




x yz 




xyz

0000 0001 0011 0010

0

0100

0 1
1

1 3
1

3 2
1

2

0101 0111 0110

4

1100

4 5 1 5

1101

7 1

1111

7 6 6

1110

C

1000

12 D 1 13 F 15 E

1010

14

1001

8 8 9

1
9 B 11

1011

A 10

A truth table and its Boolean expression are shown below, along

with the circuit of this unsimplified expression. Use the K-map

on the following page to simplify and draw the simplified circuit.

Original Circuit

f  wx yz 


 

wxyz 




wxyz 




wx yz

Exercise 4

w x y z f
0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1 1

1 1 1 0

1 1 1 1

0100 0101 0111 0110

1

1

yz yz

wx

wx

wx

wx

yz yz

Karnaugh Map of Last Example

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100 1101 1111 1110

C 12 D 13 F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

1 1

• The six implicants on the K-Map

shown can be represented by the yz
simplified expression f = x y + x z.

• Suppose for our particular logic wx
system, we know that y and z will

yz yz yz

never be 0 together. wx
• Then the yz implicants do not wx

matter, since they cannot happen.

• To show the condition cannot occur,

we put X’s in the column -- they are wx
“don’t cares” -- conditions that

cannot happen.

0000 0001 0011 0010

X
0 0 1

0101

1 3

0111

3 2

0110

2

0100

X
4

1 1 1
4 5 5 7 7 6 6

1100
X

1101

C 12

10
X
00

D
1

1111

1
1110

1
13 F 15 E 14

1001 1011 1010

8 8 9 9 B 11 A 10

0100 0101 0111 0110

1 1 1 1

1 1

• Since the function will never get into

the left column, we “don’t care” how

those minterms are represented.

Why not make them 1’s?
yz yz

yz yz
 0000 0001 0011 0010

• Doing that, we can make a much wx
larger prime implicant and a simpler 0 1 0 1 1

3 3 2 2

Boolean expression. For this 0100 0101 0111 0110

implicant, f = x.
wx

4
 1

4 5
1 1 1

5 7 7 6 6

• The expression is valid, since the
wx

1100 1101 1111 1110

forbidden condition will never allow
1

C 12 D
1

13 F
1
15 E

1
14

the two left squares to be occupied.

• “Don’t cares” let us further simplify

an expression.

1000

1
8 8

1001

9 9

1011

B 11

1010

A 10

wx

0100 0101 0111 0110

1 1 1 1

1 1

• Assume the Boolean expression is as yz
shown on the K-map (black 1’s and
black prime implicants).

• The simplest SOP expressions for the wx

yz yz yz

function is f  wxz  wxy .

• Also assume that wx yz
cannot occur.

and wx yz wx

• Since these cannot ever happen, they
are “don’t cares,” and since they are
“don’t cares,” make them 1 (red)!

• We can then further simplify the
expression to f = w x + x z (larger
prime implicants).

“Don’t Cares” – Another Example

0000 0001 0011 0010

0 0

0100

1

0101

1 3

0111

3 2

0110

2

4
1 1

4 5 5 7 7 6 6

1100

C
1

12

1000

1101 1111

D
1

13 F
1

15

1001 1011

1110

E
1

14

1010

8 8 9 9 B 11 A 10

wx

wx

• “Don’t Cares” occur when there are variable combinations,

represented by squares on a Karnaugh map, that cannot occur in

a digital circuit or Boolean expression.

• Such a square is called a “Don’t Care.” Since it can never happen,

we can assign a value of 1 to the square and use that 1 to (possibly)

construct larger prime implicants, further simplifying the circuit

(you could assign it the value 0 in a POS representation).

• Circuits or Boolean expressions derived using “Don’t Care”

squares are as valid as any other expression or circuit.

• We will see later in sequential logic that the concept of “Don’t

Cares” will help in simplifying counter circuits.

0100 0101 0111 0110

1 1 1

• n SOP Boolean expression is

defined as f=Σm(2, 6, C, D, F, E).

• The inputs are such that w is

never 1 when x = 0.

• Find the simplified expression

and draw the simplified circuit.

yz yz

wx

wx

wx

wx

yz yz

Exercise 5

0000 0001 0011 0010

0 0 1 1 3 3 2 2

0100 0101 0111 0110

4 4 5 5 7 7 6 6

1100 1101 1111 1110

C 12 D 13 F 15 E 14

1000 1001 1011 1010

8 8 9 9 B 11 A 10

	b f
	a
	c
	yz yz yz
	yz yz yz
	yz yz
	wx
	yz yz (1)
	wxyz 
	wxyz

	yz yz yz (1)
	yz
	yz yz yz (2)
	f= Σm(9, B, D, F) (SOP).

	yz yz yz (3)
	wx (1)
	yz yz yz (4)
	yz yz yz (5)
	1
	1 (1)
	1 (2)

	yz yz (2)
	wx (2)
	yz yz (3)
	yz yz yz (6)
	wx wx
	wx (3)
	yz yz yz (7)
	wx (4)
	yz yz (4)
	yz yz (5)
	wx (5)
	wx (6)
	wx (7)

	yz yz yz yz
	yz yz
	wx
	wx (1)
	wx (2)
	yz yz (1)
	wx (3)
	wx (4)
	wx (5)
	z
	f = Σm(1,2,3,5,7,11,13)
	wx
	wx (1)
	yz yz
	wxy 
	xyz
	wxyz 
	wx yz

	yz yz (1)
	wx (2)
	wx (3)
	wx (4)
	yz yz yz
	wx (5)
	yz yz (2)
	1 1 1

	yz yz yz (1)
	yz yz (3)
	wx (6)
	yz yz (4)

