

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE COIMBATORE-49

Accredited by NAAC (Cycle III) with "A+" Grade

Recognized by UGC, Approved by AICTE, New Delhi and

Affiliated to Bharathiar University,

Coimbatore.

DEPARTMENT OF COMPUTER APPLICATIONS

Course Code / Course Name: 23UCU403 /Computer System Architecture

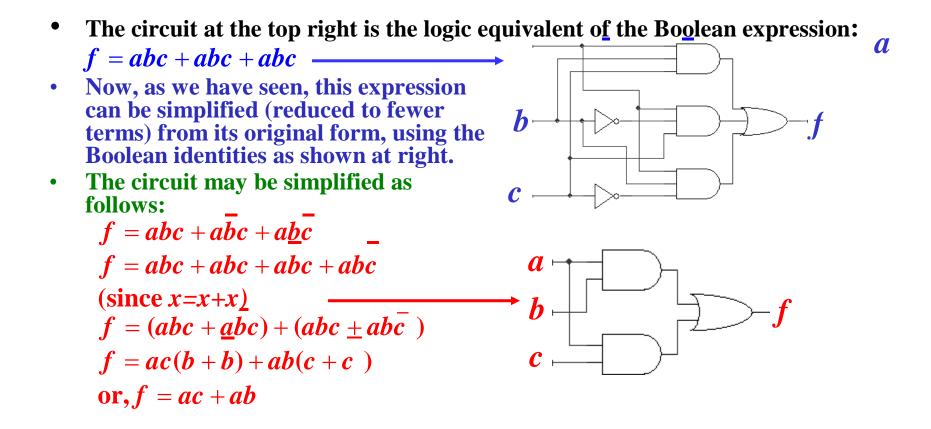
YEAR: 2023-2024

CLASS: I BCA "B"

STAFF NAME: Dr.A.DEVI

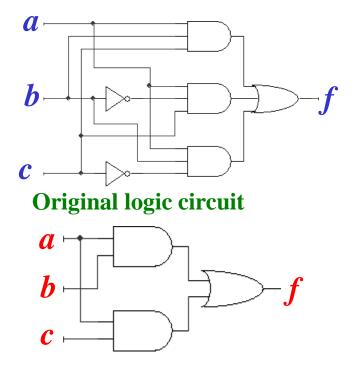
 ${\tt UNIT\,I-Data\,Simplification}$

Simplifying Logic Circuits with Karnaugh Maps



Simplifying Logic Circuits (2)

- Since you have now had some experience with simplification of Boolean expressions, this example is (hopefully) familiar and understandable.
- However, for more complex Boolean expressions, the identity/substitution approach can be VERY cumbersome (at least, for humans).
- Instead of this approach, we can use a graphical technique called the <u>Karnaugh map</u>.



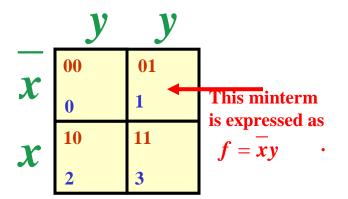
Simplified equivalent logic circuit

Karnaugh Maps

- Another approach to simplification is called the Karnaugh map, or K-map.
- A K-map is a truth table graph, which aids in visually simplifying logic. It is useful for up to 5 or 6 variables, and

is a good tool to help understand the process of logic simplification.

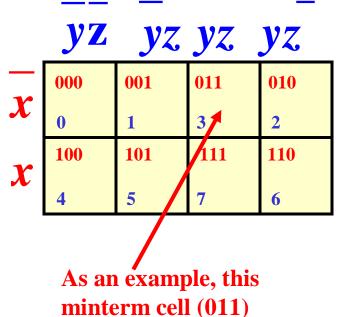
- The algebraic approach we have used previously is also used to analyze complex circuits in industry (computer analysis).
- At the right is a 2-variable K-map. ٠
- **This very simple K-map demonstrates** that an n-variable K-map contains all the combination of the n variables in the K-<u>map space</u>.



Two-Variable K-map, labeled for SOP terms. Note the four squares represent all the combinations of the two K-map variables, or <u>minterms</u>, in x & y (example above).

Three-Variable Karnaugh Map

- A useful K-map is one of three variables.
- Each square represents a 3-variable minterm or maxterm.
- All of the 8 possible 3-variable terms are represented on the K-map.
- When moving horizontally or vertically, only 1 variable changes between adjacent squares, never 2. This property of the Kmap, is unique and accounts for its unusual numbering system.
- The K-map shown is one labeled for SOP terms. It could also be used for a POS problem, but we would have to re-label the variables.



represents the

minterm f = xyz.

Four Variable Karnaugh Map

- A 4-variable K-map can simplify problems of four Boolean variables.*
- The K-map has one square for each possible minterm (16 in this case).
- Migrating one square horizontally or vertically never results in more than <u>one</u> variable changing (square designations also shown in hex).
 - * Note that on all K-maps, the left and right edges are a common edge, while the top and bottom edges are also the same edge. Thus,
 <u>the top and bottom rows are adjacent, as are</u> <u>the left and right columns</u>.

	yz.	<i>yz</i>	<i>yz</i>	уz	
	0000	0001	0011	0010	
wx	0 0	1 1	3 3	2 2	
	0100	0101	0111	0110	
<i>wx</i>	4 4	5 5	7 7	6 6	
	1100	1101	1111	1110	
wx	C 12	D 13	F 15	E 14	
—	1000	1001	1011	1010	
wx	8 8	99	B 11	A 10	
	Note that this is still an				

SOP K-map.

Exercise 1

- We will use the Karnaugh map to simplify Boolean expressions by placing minterm or maxterm values on the map and then grouping terms to develop simpler Boolean expressions.
- Let's practice placing some terms on the K-map shown. For the SOP Boolean expression below, place 1's and zeros on the map.

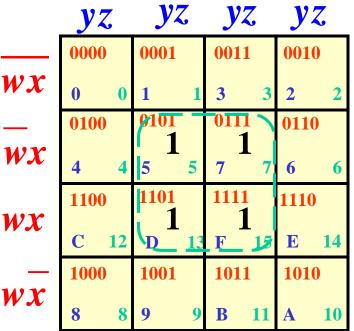
f = wxyz + wxyz + wxyz + wxyz

	yz.	yz.	<i>yz</i>	yz		
	0000	0001	0011	0010		
wx	0 0	1 1	3 3	2 2		
	0100	0101	0111	0110		
<i>wx</i>	4 4	5 5	7 7	6 6		
14170	1100	1101	1111	1110		
<i>wx</i>	C 12	D 13	F 15	E 14		
—	1000	1001	1011	1010		
<i>wx</i>	8 8	99	B 11	A 10		
-	Karnaugh map labeled for					

Karnaugh map labeled for SOP problem solution.

Karnaugh Map Comments

- K-maps can be labeled many ways, but in EE 2310, <u>always</u> use this labeling!
- Each square is unique. We can label it in <u>binary, decimal, or hex</u>. We can also designate the Boolean function <u>by the</u> <u>K-map squares it occupies</u>.
- The minterms on the K-map can be labeled as $f=\Sigma m(5, 7, 13, 15)$ in decimal, or $f=\Sigma m(5, 7, D, F)$ in hex.*
- Given the Sigma (Σ) coordinates, you could immediately deduce that the SOP function was: f = wx yz + wxyz + wx yz + wxyz



Observe that the Σ notations (in either SOP or POS) <u>completely</u> <u>describe the Boolean function</u> <u>mapped on the K-map</u>, as long as one knows what the input variables are.

Exercise 2

- Try your hand at developing the Boolean expression from the $f = \sum m$ designation on a Kmap.
- The $\sum m$ designation of a Boolean function is given as $f = \sum m(9, B, D, F)$ (SOP).
- Find the Boolean expression by plotting the 1's on the chart and developing the expression from the minterms.

	<i>y</i> 2	yz.	yz.	yz.
	0000	0001	0011	0010
<i>wx</i>	0 0	1 1	3 3	2 2
_	0100	0101	0111	0110
<i>wx</i>	4 4	5 5	7 7	6 6
<i>wx</i>	1100	1101	1111	1110
W A	C 12	D 13	F 15	E 14
	1000	1001	1011	1010
<i>wx</i>	8 8	99	B 11	A 10

19/

117

Karnaugh Map Terminology

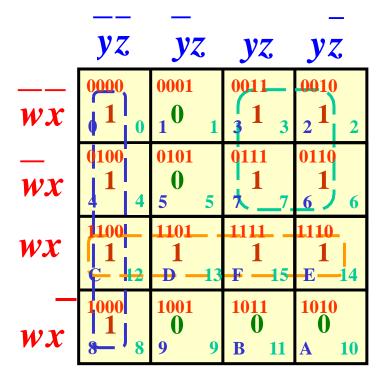
- In the K-map at right, each small square, or cell, represents one variable Boolean AND function, or minterm (if we wanted, we could label it to represent OR functions or maxterms).
- Any <u>square or rectangular</u> group of cells that is a power of 2 (1, 2, 4, 8, 16) is called an <u>implicant</u>.
- All of the groups of squares in the K-map to the left (including the single square) represent <u>implicants</u> of different sizes.

	уz	yz	yz	yz
e 4-	0000	0001	0011	0010
w <i>x</i>	0 0	1 1	3 3	2 2
-	0100	0101	0111	0110
wx (4 4	5 5	7 7	6 6
wx	1100	1101	1111	1110
	C 12	D 13	F 15	E 14
	1000	1001	1011	1010
wx	8 8	9 9	B 11	A 10

Examples of various cell groupings, all of which represent K-map <u>implicants</u>.

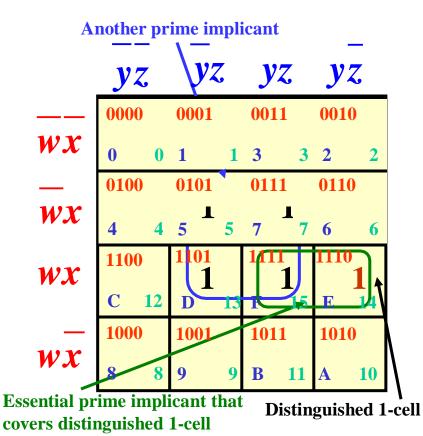
Prime Implicants

- We will be simplifying Boolean functions plotting their values on a K-map and grouping them into <u>prime implicants</u>.
- What is a prime implicant? It is an implicant that covers as many 1 values (SOP K-map) or 0 values (POS K-map) as possible, yet still retains the identity of implicant (# of cells = power of 2, rectangular or square shape).
- Some SOP prime implicants are shown on the adjoining K-map.



More Karnaugh Map Terminology

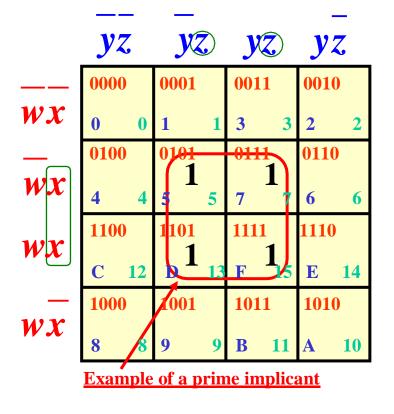
- <u>Distinguished 1-cell</u>: A single minterm that can be covered by <u>only</u> <u>one prime implicant</u>.
- <u>Essential prime implicant</u>: A prime implicant that covers one or more <u>distinguished 1-cells</u>.
- Note: <u>Every fully minimized</u> <u>Boolean expression</u> must include <u>all</u> of the essential prime implicants of f.
- In the K-map at right, the Boolean minterm f = wxyz is a distinguished 1-cell, and the essential prime implicant f = wxy is the only prime implicant that includes it.



"Prime Implicants"

- As noted two slides back, a "prime implicant" is the largest square or rectangular implicant of cells occupied by a 1 (SOP) or 0 (POS). Thus a prime implicant will have 1, 2, 4, or 8 cells (16 is a trivial prime).
- How do we determine the Boolean expression for a prime implicant?
- The Boolean expression for an SOP prime implicant is determined by creating a new minterm whose only variables are those that <u>do NOT</u> change value (0→1 or 1→0) over the extent of the prime implicant.
- Thus the prime implicant at right may be represented by the Boolean expression: f = xz.

Since x & z do not change value over the implicant, they are the variables in the new Boolean minterm.



Logic Simplification – an SOP Example

- We simplify a Boolean expression by finding its <u>prime implicants</u> on a K-Map.
- To do this, populate the K-map as follows:
 - For an <u>SOP expression</u>,* find the K-Map cell for each <u>minterm</u> of function f, and place a one (1) in it. Ignore 0's.
 - Circle groups of cells that contain 1's.
 - The number of cells enclosed in a circle must be a power of 2 and square or rectangular.
 - It is okay for groups of cells to overlap.
 - Each circled group of cells corresponds to a W prime implicant of f.
 - Note that the more cells a given circle encloses, the fewer variables needed to specify the implicant!

	—			—
	yz.	<i>yz</i>	<i>yz</i>	<i>yz</i>
	0000	0001	0011	0010
<i>wx</i>	0 0	1 1	3 3	2 2
\overline{wx}	0100 1 4 4	0101 1 5 5	0111 1 7 7	0110 1 66
wx	1100 C 12	1101 1 1	1111 	1110 E 14
—	1000	1001	1011	1010
<i>wx</i>	8 8	99	B 11	A 10

* A POS example will follow.

Using the K Map for Logic Simplification:

- Another example:
 - The implicants of f are 4, 6, 12, 14.
 - This corresponds to the function: f = wx yz + wxyz + wx yz + wxyz
 - We create a <u>prime implicant</u> by grouping the 4 cells representing f.
 - On the wx axis, the cells are 1 whether or not w is one, and always when x is 1 (w not needed).
 - On the yz axis, the cells are 1 whether or not y is one, and always when z is 0 (y not needed).
 - Thus the simplified expression for f is: $f = x\overline{z}$.

	<i>yz</i>	yz.	yz.	yz	_
	0000	0001	0011	0010	
wx	0 0	1 1	3 3	2 2	
	0100	0101	0111	0110	
<i>wx</i>	4 4	5 5	7 7	6 6	
wx	U1012	1101	1111	1110 E 14	•
		D 13	F 15		
	1000	1001	1011	1010	
w x	8 8	99	B 11	A 10	

Remember: For purposes of grouping implicants, the top and bottom rows of the K-map are considered adjacent. as are the right and left columns. This grouping takes advantage of the fact that the left and right columns are adjacent.

A POS K-Map

On a POS K-map, the procedure is the same, except that we map 0's.
Let:

 $f = (w + x + y + z) \cdot (w + x + y + z)$ $\cdot (\overline{w} + x + \overline{y} + \overline{z}) \cdot (\overline{w} + x + \overline{y} + z)$

- We find prime implicants exactly the same way – except that we look for variable that produce 0's.
- As shown, w and y do not change over the extent of the function.
- The simplified expression
 is: f = (w + y). The simplified
 circuit is shown at right.

y+z y+z y+z y+z y+z0000 0001 0011 0010 w + x0 1 3 2 1 3 2 0 0100 0101 0111 0110 w + x4 5 7 6 6 1100 1101 1110 1111 w + x13 F 15 E 14 1000 1001 w + xW v

Summary of Karnaugh Map Procedure

- In summary, to simplify a Boolean expression using a K-Map:
 - 1. Start with the truth table or Boolean expression, if you have one.
 - 2. If starting from the truth table, write the Boolean expression for each truth table term that is 1 (if SOP) or 0 (if POS).
 - **3.** (Develop the full Boolean expression, if necessary, by OR-ing the AND terms together if SOP or AND-ing OR terms if POS.)
 - 4. On the K-Map, plot 1's (for SOP) or 0's (for POS).
 - 5. Group implicants together to get the largest set of prime implicants possible. <u>Prime implicants may overlap each other</u>. They will always be square or rectangular groups of cells that are powers of 2 (1, 2, 4, 8).
 - 6. The variables that make up the term(s) of the new expression will be <u>those which do not vary in value over the extent of each prime implicant</u>.
 - 7. <u>Write the Boolean expression for each prime implicant and then OR (for SOP) or AND (for POS) terms together to get the new expression</u>.

K-Map Example of Prime Implicants

- The Boolean expression represented is: $f = \overline{wx} \overline{yz} + \overline{wxyz} + \overline{wxyz} + wx \overline{yz}$ $+wxyz + wxy\overline{z} + w\overline{x} \overline{yz} + w\overline{xyz}$
- Note that since prime implicants must be powers of 2, the largest group of squares we can circle is 4.
- Thus we circle three groups of 4 (in red). <u>The circles may overlap</u>.
- We now write the new SOP simplified expression. It is:

f = xy + xz + wz

							_	-
	<i>yz</i>		yz	7 3	yz.	•	yz	•
	0000		0001		0011		0010	
<i>wx</i>	0	0	1	1	3	3	2	2
	0100		0101		0111		0110	N
<i>wx</i>	4	4	5 I	5	7 [⊥]	7	6 L	6
	1100		1101		1111		1110	
<i>wx</i>			T	13	I	5	E ⊥	14
	1000		1001		1011		1010	
<i>wx</i>	8		1	9	1	1	A	10
NOT a prime implicant!								

Another SOP Minimization, Given the Truth

w	X	У	z	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	1
0	1	0	1	1
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	1
1	1	0	1	1
1	1	1	0	
1	1	1	1	

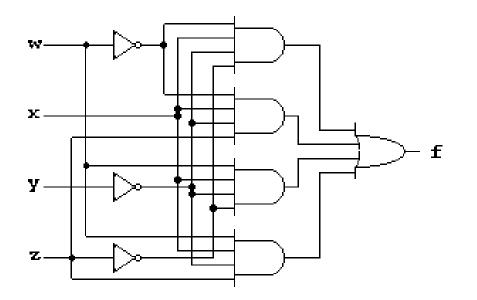
Minterms Plotted on K-Map

- The four minterms are plotted on the truth table.
- Note that they easily group into one prime implicant.
- Over the extent of the prime implicant, variables w & z vary, so they cannot be in the Boolean expression for the prime implicant.
- Variables x and y do not vary.
- Thus the expression for the minimum SOP_representation must be f = xy.

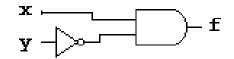
	<i>yz</i>	<i>yz</i>	<i>yz</i>	<i>yz</i>
	0000	0001	0011	0010
<i>wx</i>	0 0	1 1	3 3	2 2
	0100	0101	0111	0110
wx	4 4	5 5	7 7	6 6
wx	100 1 12	1101 1 13	1111 F 15	1110 E 14
	1000	1001	1011	1010
wx	8 8	99	B 11	A 10

The original Boolean expression is: f = wx yz + wx yz + wx yz + wx yz

Original and Simplified Circuits



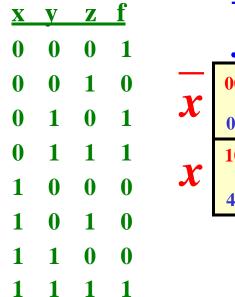
Logic circuit from truth table.



Equivalent circuit after reduction using Karnaugh map.

Exercise 3

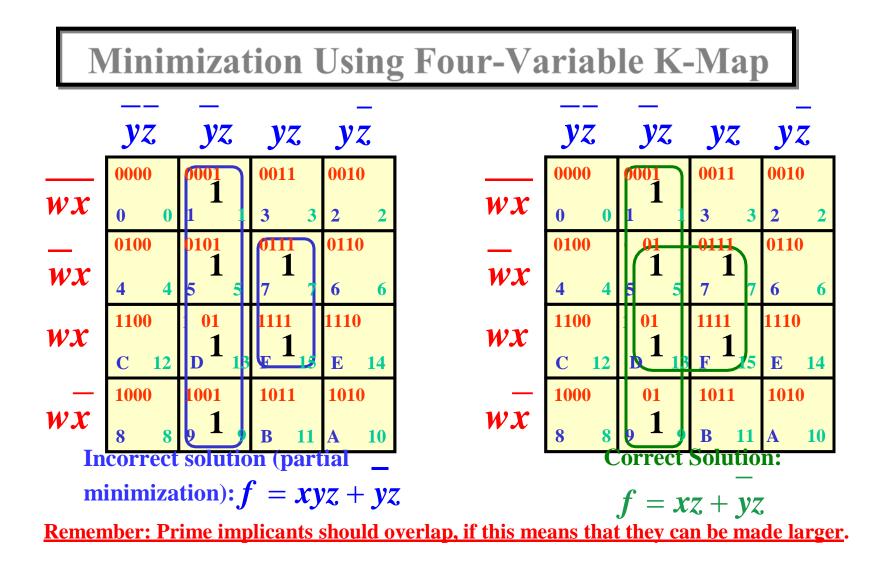
• The truth table below was developed from a "spec." Show the SOP expression and then minimize it using a K-map and draw the minimized circuit.



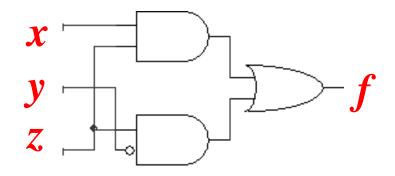
	yz	yz.	yz .	yz.
-	000	001	011	010
x	0	1	3	2
r	100	101	111	110
	4	5	7	6

Another Example: Biggest Prime Implicants

w	X	У	Z	f
0	0	0	0	
0	0	0	1	1
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	1
0	1	1	0	
0	1	1	1	1
1	0	0	0	
1	0	0	1	1
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	1
1	1	1	0	
1	1	1	1	1



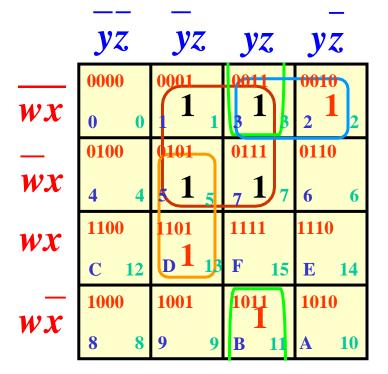
Resulting Circuit



Note that <u>the resulting circuit uses 3 logic gates</u>, whereas the original expression, with <u>six minterms</u>, would have used a minimum of <u>seven gates and</u> <u>four inverters</u>.

Sometimes Major Simplification is Not Possible

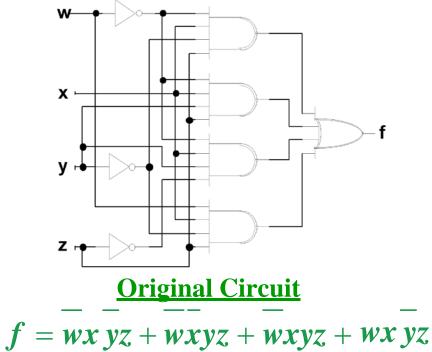
- Using the Σ notation: $f = \Sigma m(1, 2, 3, 5, 7, 11, 13)$
- Note that there are 3 distinguished one-cells (in red).
- There must therefore be at least 3 prime implicants (4 in this case, 3 essential).
- The simplified expression (and not very simplified at that) is: f = wz + wxy + xyz + xyz



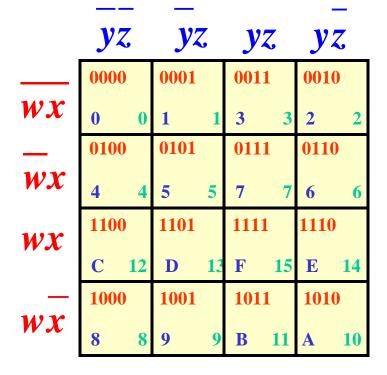
Exercise 4

A truth table and its Boolean expression are shown below, along with the circuit of this unsimplified expression. Use the K-map on the following page to simplify and draw the simplified circuit.

w	X	У	Z	f
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	1
1	1	1	0	
1	1	1	1	

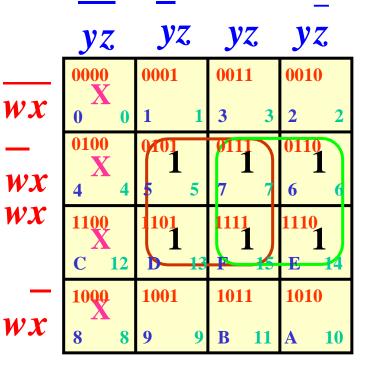


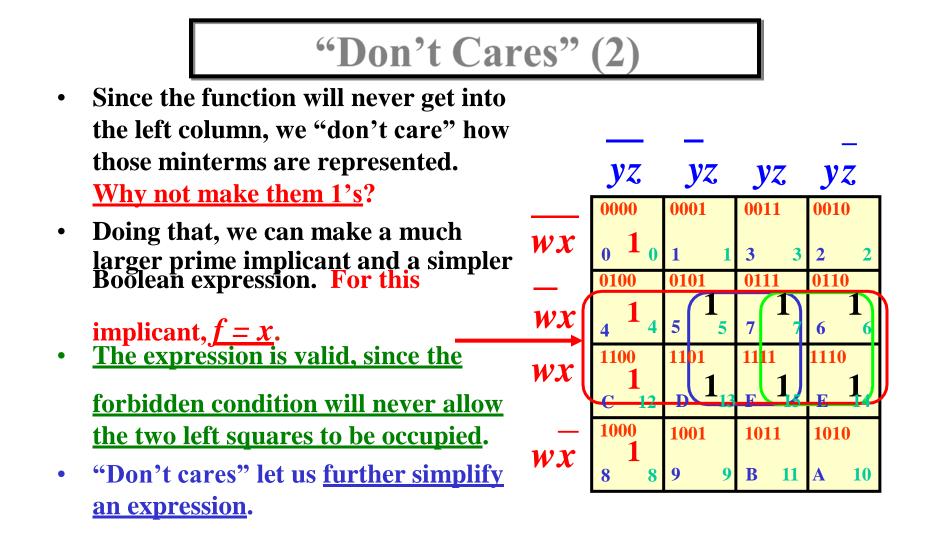
Karnaugh Map of Last Example



The Concept of "Don't Cares"

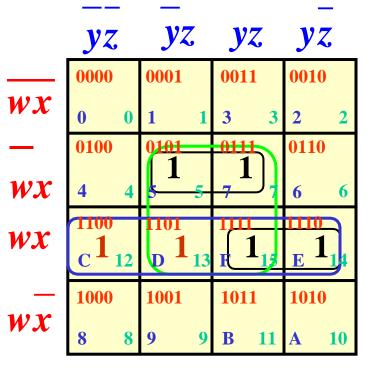
- The six implicants on the K-Map shown can be represented by the simplified expression f = x y + x z.
- Suppose for our particular logic system, we know that *y* and *z* will <u>never be 0 together</u>.
- Then the yz implicants do not matter, since they cannot happen.
- To show the condition cannot occur, we put X's in the column -- they are "don't cares" -- conditions that cannot happen.





"Don't Cares" – Another Example

- Assume the Boolean expression is as shown on the K-map (black 1's and black prime implicants).
- The simplest SOP expressions for the function is f = wxz + wxy .
- Also assume that wx yz and wx yz cannot occur.
- Since these cannot ever happen, they are "don't cares," and since they are "don't cares," make them 1 (<u>red</u>)!
- We can then further simplify the expression to f = w x + x z (larger prime implicants).



"Don't Cares" -- Summary

- "Don't Cares" occur when there are variable combinations, represented by squares on a Karnaugh map, <u>that cannot occur in</u> <u>a digital circuit or Boolean expression</u>.
- Such a square is called a "Don't Care." Since it can never happen, we can assign a value of <u>1</u> to the square and use that 1 to (possibly) construct larger prime implicants, further simplifying the circuit (you could assign it the value 0 in a POS representation).
- Circuits or Boolean expressions derived using "Don't Care" squares are as valid as any other expression or circuit.
- We will see later in sequential logic that the concept of "Don't Cares" will help in simplifying counter circuits.

Exercise 5

- n SOP Boolean expression is defined as $f=\Sigma_m(2, 6, C, D, F, E)$.
- The inputs are such that w is never 1 when x = 0.
- Find the simplified expression and draw the simplified circuit.

	yz.	yz.	<i>yz</i>	<i>yz</i>
	0000	0001	0011	0010
wx	0 0	1 1	3 3	2 2
	0100	0101	0111	0110
<i>wx</i>	4 4	5 5	7 7	6 6
wx	1100	1101	1111	1110
	C 12	D 13	F 15	E 14
$\frac{1}{wx}$	1000	1001	1011	1010
VV A	8 8	99	B 11	A 10